全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2021-02-19_清华大学朱文武团队夺冠AAAI 2021国际深度元学习挑战赛

您的位置:首页 >> 新闻 >> 行业资讯

清华大学朱文武团队夺冠AAAI 2021国际深度元学习挑战赛 点击上方,选择星标或置顶,不定期资源大放送! 阅读大概需要5分钟 Follow小博主,每天更新前沿干货 转自:机器之心 清华大学朱文武教授团队摘得AAAI 2021 国际深度元学习挑战赛(MetaDL Challenge)冠军。 近日,国际人工智能顶级会议 AAAI 2021 召开,清华大学朱文武教授团队的 Meta_Learners 团队在 AAAI 2021 国际深度元学习挑战赛(MetaDL Challenge)中夺得冠军。该团队在最终阶段的隐藏测试数据集上取得了 40.4% 的准确率,以高于第二名 13% 性能的大幅度领先强势摘得桂冠。 元学习是机器学习自动化过程的一个重要步骤,旨在设计和训练拥有强大适应能力和泛化能力的机器学习模型,来应对现实应用场景中环境变化剧烈、训练数据不足的挑战。 随着机器学习解决实际问题的日益复杂化,元学习,特别是深度元学习,近期受到了来自产学研各界越来越多的关注,成为人工智能领域最热门的研究方向之一。目前,谷歌、微软、亚马逊等国际巨头均已将元学习算法应用到自己的产业链之中;国内许多知名公司,如腾讯、百度、字节跳动等,也在不断完善自己的元学习算法和系统。 此次 MetaDL 挑战赛是元学习领域举办的第一届比赛,由第四范式和微软联合举办,并登陆人工智能领域顶级会议 AAAI 2021,吸引了众多国内外优秀团队的关注和参与。本次赛事共有近一百支队伍参赛,内容为图像分类领域中的小样本学习问题。 小样本学习是目前机器学习国际前沿正在解决的问题之一,是元学习的一个重要应用场景,而基于小样本的深度元学习将更加复杂,面临巨大挑战。与以往的小样本学习不同,本次比赛同时考察元学习算法本身的泛化性和自适应性,对算法在各个场景下的有效性进行测试。 比赛分为两个阶段:Feedback 阶段与 Blind test 阶段。 Feedback 阶段是代码提交及完善阶段。主办方提供了一个公开的线下数据集以及一个隐藏的线上数据集,供参赛者构建以及调试他们的 MetaDL 系统。 Blind test 阶段是最终测试阶段。此阶段拥有另一个完全不同的隐藏测试集。第一阶段提交的最后一次代码会在这个数据集上进行训练和测试,最终的结果将被作为最终效果用于排名。 每个数据集都由两部分组成:元训练数据集以及元测试数据集。元训练数据集包含若干类图片供深度元学习模型进行元训练过程,而元测试数据集包含 600 个片段(episode),每个片段均是五分类一训练样本十九测试样本(5-way-1-shot-19-query)的小样本图像分类任务。对于每个片段,模型需要在给定的五个训练样本(support set)上执行训练过程,并对剩余九十五个测试样本(query set)进行测试。 本次比赛具有以下三个方面的挑战: 一、如何使模型具有快速适应小样本新任务的能力。在这次比赛中,参赛者提交的模型拥有两次训练过程:元训练过程以及测试训练过程。在元训练过程中,模型必须提炼出该数据集的元知识以及最佳的学习方法,来确保模型在测试训练过程中能快速学习并防止过拟合。 二、时间以及空间约束。本次比赛拥有对时间以及空间的约束条件。总时长不超过 2h,总 GPU 资源占用不得超过 4 张 8G M60 GPU。这要求参赛者提供的模型必须高效、轻量地提取元知识和学习方法。 三、适配未知数据集。相别于传统小样本学习,本次比赛还考察了模型对于不同类型数据集的适应效果。由于事先并不知道测试阶段的隐藏元训练数据,挑战者提交的模型必须拥有足够的泛化能力,来应对在未知类型的数据集中提炼元知识的能力。这一点又被称为元-元学习,是对元学习的补充与提升。 为了应对以上三个问题,Meta-Learners 参赛团队提出了自适应深度元学习系统 Meta-Delta 来实现轻量级、高效、高泛化性的元学习模型。 Meta-Delta 系统采用基于测量的方法(metric-based method)来作为元学习模型的内核(如图 Meta-Learner)。这种方法将数据集映射到一个元知识空间,并以空间中测试样本点(query)和训练样本点(support)的距离远近,来快速进行小样本分类。这样的做法将元知识的提取转化为空间变换问题,是最近研究中效果最好的元学习算法之一,很好地解决了快速适应小样本新任务的挑战。 基于此内核,团队精心构造了资源控制模块,精准管控与分配模型学习时的时间空间消耗,采用多进程与多线程相结合的方式,在不超时的前提下进行尽可能充分的元知识提取。最后,系统采用不同的预训练模型 + 多模型整合(ensemble)的方式,使得整个系统在面对未知的数据集时,仍然能够有效地提取出最佳元知识,使其具有更强的泛化能力。 团队成员介绍 Meta_Learners 团队成员包括计算机系在读硕士生关超宇、卫志坤、陈禹东,由关超宇担任队长,朱文武教授与王鑫助理教授担任指导教师。 团队从 2015 年开始关注和研究机器学习自动化相关研究领域,已经具备了较为丰富的领域知识和较为深厚的技术积累,该团队曾摘得 NeurIPS 2018 Lifelong-AutoML 比赛高校冠军。此次参与 MetaDL 第一届比赛以显著优势夺得冠军。 元学习作为一个越来越受关注的研究领域,其应用价值已得到了广泛认可,但其中的关键技术目前仍无法满足日益复杂的现实场景需求,具备广阔的研究前景。Meta_Learners 团队将持续深耕,以保持在该领域的竞争力。 Meta-Delta 论文下载地址:http://mn.cs.tsinghua.edu.cn/xinwang/PDF/AAAI21_MetaDelta.pdf Meta-Delta 系统源码链接:https://github.com/Frozenmad/MetaDelta 重磅!DLer-AI顶会交流群已成立! 大家好,这是DLer-AI顶会交流群!首先非常感谢大家的支持和鼓励,欢迎各位加入DLer-AI顶会交流群!本群旨在学习交流人工智能顶会(CVPR/ICCV/ECCV/NIPS/ICML/ICLR/AAAI等)、顶刊(IJCV/TPAMI/TIP等)写作与投稿事宜。包括第一时间发布论文信息和公开演讲视频,以及各大会议的workshop等等。希望能给大家提供一个更精准的研讨交流平台!!! 添加请备注:AI顶会+学校/公司+昵称(如CVPR+上交+小明) ??长按识别添加,即可进群!

上一篇:2024-03-03_LangChain 实战:Agent思维 下一篇:2022-11-07_立冬海报合集,暖乎乎的创意来了

TAG标签:

16
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价